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Abstract Urban travel demand, consisting of thousands or millions of origin–destination

trips, can be viewed as a large-scale weighted directed graph. The paper applies a complex

network-motivated approach to understand and characterize urban travel demand patterns

through analysis of statistical properties of origin–destination demand networks. We

compare selected network characteristics of travel demand patterns in two cities, pre-

senting a comparative network-theoretic analysis of Chicago and Melbourne. The proposed

approach develops an interdisciplinary and quantitative framework to understand mobility

characteristics in urban areas. The paper explores statistical properties of the complex

weighted network of urban trips of the selected cities. We show that travel demand net-

works exhibit similar properties despite their differences in topography and urban struc-

ture. Results provide a quantitative characterization of the network structure of origin–

destination demand in cities, suggesting that the underlying dynamical processes in travel

demand networks are similar and evolved by the distribution of activities and interaction

between places in cities.
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Introduction

With the growing global urban population, many cities around the world are under pressure

because of the increasing demand for activities and travel. Activity- and agent-based

models of travel demand are helping understand mechanisms underlying travel choices in

their spatial context (Axhausen and Garling 1992; Bowman and Ben-Akiva 2001; Carrasco

and Miller 2006; Timmermans and Zhang 2009); however, travel demand has not typically

been analyzed from a network perspective. Advances in transportation network modeling

have focused on the supply side, mainly modeling within-day equilibria and day-to-day

evolution of traffic flows (Mahmassani 2001; Watling and Hazelton 2003), and exploring

dynamics of network traffic flow (Daganzo 2007; Geroliminis and Daganzo 2008; Mah-

massani et al. 2013). More recently, availability of vehicle trajectory data from GPS

devices has helped further characterize driver route choices and network flow properties

(Saberi et al. 2014; Joubert and Axhausen 2013; Kim and Mahmassani 2015). In this study,

we are motivated by the recognition that travel demand in cities, consisting of thousands or

millions of origin–destination trips, can be viewed as a large-scale complex weighted

directed graph or network. Such networks exhibit additional degree of complexity because

of the link weight representing intensity of interaction between nodes.

Complex networks theory is a highly active interdisciplinary research area inspired by

numerous empirical studies of computer and social networks (Faloutsos et al. 1999; Yook

et al. 2002; Siganos et al. 2003; Watts 2003). A system consisting of several non-identical

elements connected by diverse interactions can be viewed as a complex network where the

nodes are the system elements and the links are the interactions between the elements.

Examples of such complex networks are the internet (Faloutsos et al. 1999), friendship

networks (Eagle et al. 2009), business relationship networks (Costa and Baggio 2009),

scientific collaboration networks (Newman 2001), virtual gaming networks (Keegan et al.

2010), airline and cargo ship networks (Woolley-Meza et al. 2011), genetic interaction

networks (Kelley and Ideker 2005), and protein–protein interaction networks (Rual et al.

2005).

More recently, understanding human mobility patterns in different scales from a

complex network perspective has become an attractive research topic for statistical

physicists, applied mathematicians, and social scientists. Brockmann et al. (2006) analyzed

the circulation of bank notes in the United States as a proxy to the traveling behavior of

humans and showed that human traveling patterns can be described by a two-parameter

continuous time-random walk model. Several other studies have used phone call, social

network and mobile data to explore and verify the scaling laws of human mobility from

urban to global scale (Brockmann et al. 2006; González et al. 2008; Jiang et al. 2009;

Bazzani et al. 2010; Song et al. 2010; Roth et al. 2011; Woolley-Meza et al. 2011; Noulas

et al. 2012; Simini et al. 2012; Liang et al. 2012; Kang et al. 2012; Peng et al. 2012;

Schneider et al. 2013). Studies by Colak et al. (2013), Wang et al. (2012) and Hasan et al.

(2013) applied complex network-driven measures to study mobility characteristics in urban

areas. Iqbal et al. (2014), Toole et al. (2015), Colak et al. (2015), and Widhalm et al. (2015)

used cell phone data to explore patterns in urban activities, mainly inferring origin–des-

tination matrices.

The idea of viewing individuals’ travel patterns as a tree, graph, or network is not new.

Numerous studies in the past have looked at human activity spaces to study the spatial

behavior of individuals (Theriault et al. 2002; Schonfelder and Axhausen 2003; Fan and

Khattak 2008; Kamruzzaman and Hine 2012; Rai et al. 2007). Activity space is an
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environment where a person travels between destinations for his or her daily activities

(Golledge and Stimson 1997; Schonfelder and Axhausen 2003). It is also known as a

traveler cognitive or mental map, personal world, activity repertoire, and expectation space

(Lynch 1960; Gould and White 1974; Downs and Stea 1973). In a recent series of studies,

Betty (2013) argues that to better understand cities, one must understand flows and net-

works to demonstrate relationships between people and places. Notwithstanding the

growing number of studies on traveler-activity space, the collective structure and prop-

erties of combined individuals’ activity spaces in an urban environment have not been

thoroughly studied before from a network perspective. Traditional methods of analyzing

and predicting urban travel demand focus more on the attributes of individuals and land use

characteristics of locations with less emphasis on understanding and predicting sets of

interactions between different elements in an urban system. Gravity based models of travel

demand are perhaps the simplest representation of spatial interactions between locations.

Alternatively, utility-based destination choice models take into account the behavioral

factors underlying travel demand. In this paper, we try to demonstrate the further potential

insights that can be obtained by extending existing demand analysis methods to complexity

theory driven approaches. The idea is that urban travel demand can be better understood

through analyzing its network structure. Network-based analysis of travel demand provides

a deeper understanding of the spatial interdependencies and interactions between locations.

A challenging next step is to couple various types of networks. An example is the recent

study by Chen et al. (2015) exploring the influence of social network on travelers’ desti-

nation choice. They show that social interactions play a role in travelers’ choice of des-

tination by observing a possible correlation between travelers’ behavior and the influence

from their friends.

Here we introduce a complex network-driven approach to understand and characterize

urban travel demand as a complementary tool to existing advanced activity- and agent-

based models, building upon recent studies by González et al. (2008) and Schneider et al.

(2013). The analysis investigates whether the patterns observed in previous complex

network studies are reproducible specifically in the urban transportation context using

household travel survey data. We compare selected network characteristics of travel

demand in two cities, presenting a comparative network-theoretic analysis of urban travel

demand in Chicago and Melbourne. The approach provides an interdisciplinary and

quantitative framework to understand and characterize statistical properties of the complex

network of urban trips. We show that travel demand networks in these two cities exhibit

similar properties despite the differences in topography and urban structure. The resulting

insights from viewing travel demand as a complex network uncovers interesting spatial

phenomena in cities. Results suggest that the underlying dynamical processes in travel

demand networks are driven by the interaction strength between places (or nodes) as

previously observed in other types of networks (Newman 2010). These results provide a

first step towards a new methodological basis for calibration and validation of activity- and

agent-based travel demand models, which still requires further research. Overall, the study

addresses two main research questions: (a) What can we learn from characterizing urban

travel demand using complex network-theoretic measures? (b) Does travel demand net-

works in different cities exhibit similar statistical characteristics?

The remainder of the paper is organized as follows. In ‘‘Background on human mobility

characteristics’’ section, we provide a summary of previous studies including their data,

scale, and key findings. In ‘‘Complex network of urban travel demand: concept and data’’

section, we briefly explain applicable concepts from complex network theory and describe

the data used in the paper. ‘‘Statistical properties of urban travel demand networks’’ section
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provides a comparative statistical analysis of the complex network of trips in Melbourne

and Chicago. In ‘‘Spatial analysis of travel demand network properties’’ section, we study

the effect of spatial form and geographical context on the selected network properties.

‘‘Shortest path trees and effective distance’’ section further explores the properties and

structure of the complex network of trips from the perspective of a node in the network,

using shortest path trees and effective distances. The ‘‘Conclusion’’ section concludes the

paper.

Background on human mobility characteristics

Numerous studies have analyzed human mobility characteristics in different scales using

different data sources. Several studies suggested that mobility patterns represented by

distance traveled l, follows a power law P lð Þ / l�b (Brockmann et al. 2006; González et al.

2008; Jiang et al. 2009; Song et al. 2010) while others proposed that an exponential law

P lð Þ / e�bl provides a better fit (Bazzani et al. 2010; Roth et al. 2011; Liang et al. 2012;

Peng et al. 2012; Kang et al. 2012; Noulas et al. 2012). The observed differences are

known to be dependent on the travel mode and spatial scale of the data. Other studies

expanded the use of mobile phone calls and taxi GPS data to characterize urban travel

demand and to properly represent individuals’ daily travel patterns (Ratti et al. 2006;

Calabrese et al. 2011; Çolak et al. 2015). Table 1 provides a summary of selected previous

studies.

Complex network of urban travel demand: concept and data

Urban transportation can be viewed as a complex densely connected network of individ-

uals’ activity spaces. In this section, we provide a quantitative description of such networks

using complex network theory (Newman 2010) where pairs of nodes i and j represent

origins and destinations which are connected by links with non-negative weights wij[ 0 if

one or more trips are made between the nodes. If no trip is made between a pair of nodes,

wij = 0. In such networks, one could possibly find an indirect path between any pair of

nodes; wij quantifies the number of trips between pairs of nodes per unit of time. See Fig. 1

for an illustration of daily activity spaces of randomly selected individuals in a household

as a small sample network and the spatial distribution of origins and destinations (nodes) in

the Melbourne metropolitan area.

The complex network of trips in Chicago is constructed using the Chicago household

travel survey data. The network includes 78,681 trips made between 1868 nodes covering

the entire northeastern Illinois region, USA. Nodes in Chicago represent Census blocks that

are the smallest statistical subdivisions of a county, having on average a population of

4000. To construct the travel demand network for Melbourne, we use the Victorian inte-

grated survey of travel and activity (VISTA) data with 133,938 trips and 9310 nodes

covering greater Melbourne, Geelong and regional centers in Victoria, Australia. Similarly,

nodes in Melbourne represent census collection districts (CCD) that are the smallest

geographical areas defined in the Australian standard geographical classification. Each

CCD contains an average of about 250 dwellings. Nodes in both datasets may contain a

variety of land uses including residential, commercial, institutional, industrial, parks, etc.

In fact, they could represent a location or destination of any trip.
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Both networks represent a relatively small sample (near 0.5 %) of the total number of

trips made daily in those regions. Here we assume that the obtained sample data provide a

true representation of travel demand of the entire population in the selected cities. The size

Table 1 A summary of selected recent literature on human mobility characteristics

Study Data source Scale Key findings

González et al.
(2008)

Mobile phone Urban,
regional

Human trajectories show a high degree
of temporal and spatial regularity,
each individual being characterized by
a time independent characteristic
travel distance and a significant
probability to return to a few
frequented visited locations.

Brockmann (2009,
2010) and
Thiemann et al.
(2010)

Wheresgeorge.com (money
circulation)

National High degree of symmetry in multi-scale
mobility networks.

Larger nodes are strongly connected to a
larger number of other nodes.

Travel of bank notes exhibits a Lévy-
like pattern.

Human mobility borders are very
different to administrative borders.

Song et al. (2010) Mobile phone Unknown - Human mobility patterns are highly
predictable.

- Most individuals are well localized.

Woolley-Meza
et al. (2011)

World-wide air
transportation network and
global cargo-ship network

Global Degree, flux and weight distributions do
not fit power law.

The effective distance approach gives a
better representation of a large
network.

Nguyen and
Szymanski (2012)

Gowalla (social network) Unknown Network congestion is dramatically
affected by friendship mobility
patterns.

A friendship mobility model (FMM) is
presented.

Noulas et al. (2012) Foursquare Global Human urban movements do not follow
power law.

Riccardo et al.
(2012)

GPS Regional Distribution of average daily trips
follows an exponential law.

Urban short trips distribution does not
fit a power law.

A power law only fits the distribution of
long distance urban travels.

Liang et al. (2012,
2013)

Beijing taxis GPS, Chicago
and Los Angeles household
travel tracker survey

Urban,
regional

Geographic origins and destinations
distributions follow similar patterns.

Distribution of trip distances depends of
geographic distribution of human
travel demands.

Trip length distribution is best fitted by
exponential law.

Schneider et al.
(2013)

Individuals’ travel survey,
mobile phone

Urban Data from two cities exhibit the same
set of ubiquitous networks that can
reveal general human mobility
characteristics.
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of the sample data from Melbourne is 1.7 times larger compared to Chicago. For both

Chicago and Melbourne networks, the resulting weight matrix W is not fully symmetric,

wij = wji. Figure 2 shows the regional coverage and qualitative structure of each network.

Despite their significant topological and structural differences, both networks exhibit

surprising similarities, as discussed in the next sections.

Figure 3 illustrates a comparative analysis of probability density functions of individ-

ual’s distance traveled l in kilometers per trip and activity duration d in minutes in the

selected cities. An earlier study by Brockmann et al. (2006) showed that distance traveled

obtained from bank note dispersal follows a power law with a scaling exponent of

b = 1.59. Using mobile phone data, a later study by González et al. (2008) showed that

individual’s distance traveled follows a truncated power law with a scaling exponent of

b = 1.75 not far from the previously observed value. Here we use actual distance traveled

on the road network, or so-called network distance traveled, different from the

Fig. 1 a Illustration of daily activity spaces of three members of a randomly selected household in
Melbourne; b spatial distribution of origins and destinations in Melbourne

Fig. 2 a The complex network structure of a sample of trips in the Chicago metropolitan area, USA.
Number of trips = 78,681, number of links = 37,528, and number of nodes = 1868, b The complex
network structure of a sample of trips in the Melbourne metropolitan area, Australia. Number of
trips = 133,938, number of links = 63,916, and number of nodes = 9310. See Figs S1 and S2 in the
supplementary material for a higher resolution zoomed in version of the figures
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geographical direct line distance between an origin and a destination. Results suggest that a

power law fit does not entirely represent the probability distribution of the distance traveled

in both cities, consistent with findings of Noulas et al. (2012). We found that a truncated

power law function with an exponential cutoff reasonably fits the distributions, confirming

findings of González et al. (2008).

P lð Þ ¼ ðlþ l0Þ�b
expð�l=jÞ ð1Þ

with exponents b ¼ 1:03 � 0:06 and 1:29 � 0:02, l0 ¼ 3:6 � 0:7 km and 2:1 � 0:0 km,

and cutoff values j ¼ 16:6 � 2:4 km and 19:0 � 1:6 km for Chicago and Melbourne,

respectively for l\100 km. However, the estimated bs are smaller than the scaling

exponents observed in earlier studies.

More interestingly is the distribution of activity durations that exhibit an abrupt cutoff at

d� 600 min 10hð Þ. The activity duration distributions also show two peaks at d� 8 h and

d� 10 h. Note that activity durations considered in this study exclude the duration if an

individual stays home at night until next morning before making the first trip in the day

after 3:00 am. Further research should explore travel demand as a temporal network

considering time-dependency of trips and activity durations.

Statistical properties of urban travel demand networks

In this section, we provide a comparative quantitative analysis of the statistical properties

of the selected networks. The original networks are first reduced to their largest connected

component. The resulting connected network of trips in Melbourne comprises more than

three times as many nodes N as in Chicago while its number of links L is less than two

times larger. This yields to a less densely connected network of trips in Melbourne with

d = 3 9 10-3 and L/N = 10.63 compared to Chicago with d = 21 9 10-3 and L/

N = 20.1 where d & 2L/N2, representing network connectivity, assuming the weight

matrix is almost symmetric, as summarized in Table 2.

The node degree k is the number of links connected to a node in a network where aij are

elements in the adjacency matrix.

Fig. 3 Comparative analysis of probability density functions of a network distance traveled l (km) and
b individual activity duration d (min) in Chicago (blue) and Melbourne (green). (Color figure online)
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ki ¼
X

j

aij ð2Þ

The average node degree in the network of trips in Chicago is hki = 20.1 which is near

two times greater than the average node degree in Melbourne hki = 10.6. This is mainly

due to the smaller sample size in Chicago and the larger geographical coverage of data in

Melbourne. This could also be interpreted as larger interaction between places in Chicago

compared to Melbourne. For the same reason, the variability of hki being measured by the

coefficient of variation CV(k) is greater in Melbourne by one and a half times compared to

Chicago, suggesting a larger heterogeneity in connectivity between nodes in Melbourne.

The node flux F is the number of trips starting or ending at a node where wij represents

the weight or the number of trips between each pair of nodes.

Fi ¼
X

j

wij ð3Þ

The average node flux is also near two times greater in Chicago hFi = 42.1 compared

to Melbourne hFi = 22.3. While this is perhaps due to the different characteristics of the

Table 2 Travel demand network
characteristics of Chicago and
Melbourne

Number of nodes N, number of
edges L, network connectivity
d = 2L/N2, total number of trips
T, mean distance traveled in
km l, mean activity duration in
hours d, mean node flux F, mean
node degree k, mean edge weight
w, and associated coefficients of
variation, mean clustering
coefficient c, mean weighted
clustering coefficient wc, network
clustering coefficient C, weighted
and unweighted average shortest
path wdT and dT, weighted and
unweighted network diameter wu
and u

Chicago Melbourne Ratio (Melbourne/
Chicago)

N 1867 5998 3.21

L 37,527 63,788 1.70

L/N 20.1 10.63 0.53

d 21e-3 3e-3 0.14

T 78,680 133,754 1.70

hli (km) 11.7 8.2 0.70

hdi (h) 3.9 1.9 0.48

hFi (trips) 42.1 22.3 0.53

hki 20.10 10.63 0.53

hwi 2.10 2.10 1

CV(l) 1.23 2.02 1.64

CV(d) 1.07 1.41 1.32

CV(F) 1.15 2.01 1.74

CV(k) 0.93 1.40 1.50

CV(w) 1.73 1.56 0.90

hci 0.30 0.36 1.22

hwci 0.16 0.18 1.18

C 0.18 0.15 0.86

dT 3.03 4.05 1.33

wdT 3.28 4.78 1.45

u 7 12 1.71

wu 11 23 2.09
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collected survey data and different geographical coverage of the two samples, it could also

suggest that interaction between places are stronger in Chicago. Similarly, the coefficient

of variation of node flux CV(F) is greater in Melbourne by nearly two times compared to

Chicago suggesting a more heterogeneous distribution of interaction strengths in

Melbourne.

The average number of trips on each link is given by the mean link weight w, which is

identical in both networks, in spite of the larger number of trips in the Melbourne network.

We believe this is only a coincidence rather than a general phenomenon since the dis-

persion of link weights is different in the two cities; coefficients of variation CV(w) in

Chicago and Melbourne networks are 1.73 and 1.56, respectively.

The clustering coefficient c is a measure of the degree to which the nodes in a network

tend to cluster together, and is measured by the fraction of paths of length two in the

network that are closed. This is simply the number of triangles that pass through a node.

ci ¼
number of pairs of neighbors of i that are connectedð Þ

ðnumber of pairs of neighbors of iÞ ð4Þ

The mean clustering coefficient c is larger in Melbourne compared to Chicago, sug-

gesting that the complex network of trips in Melbourne is more locally connected despite

being globally sparser. The clustering coefficient is also suggested to reflect the formation

of groups or communities in networks (Newman and Park 2003). Alternatively, one can

calculate the weighted clustering coefficient wc where the number of trips between

neighboring nodes is also taken into consideration. The mean weighted clustering coeffi-

cient wc is found to be similarly larger in Melbourne compared to Chicago.

The network clustering coefficient C is a global measure of the extent to which nodes in

a network are clustered. C is calculated as a ratio of the number of triangles to the number

of connected triples of nodes, expressed as

C ¼ number of trianglesð Þ � 3

ðnumber of connected triplesÞ ð5Þ

For Chicago and Melbourne C = 0.18 and 0.15, respectively. These values suggest that

both cities have very similar network characteristics as typical social networks (Newman

2010). C in Melbourne is slightly larger than Chicago suggesting a lower connectivity

between the nodes and larger spatial distribution of nodes.

The term dT is defined as the average shortest path length between each pair of nodes in

the network using the adjacency matrix. Similarly, wdT is defined as the average weighted

shortest path length between each pair of nodes using the weight matrix. Average shortest

path is often used to measure network efficiency (Ye et al. 2010). For Melbourne, both dT
and wdT are larger compared to Chicago, similarly suggesting a lower connectivity

between the nodes and larger spatial distribution of nodes in Melbourne.

The network diameter u is defined as the longest shortest path between each pair of

nodes in the network using the adjacency matrix. The weighted network diameter wu is the

longest weighted shortest path between each pair of nodes using the weight matrix. The

diameter represents the linear size of a network. Both u and wu are significantly larger in

Melbourne, indicating that the network of trips in Melbourne is near two times larger in

size compared to Chicago. This could also be interpreted as denser connectivity between

nodes in Chicago representing higher interaction between places.
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Table 3 provides a summary explaining the underlying physical meaning of selected

network measures. In general, network-based measures provide a quantifiable picture of

interactions and interaction strengths between origins and destinations. Such comprehen-

sive information about connectivity between places is not fully captured by gravity-based

models of trip distribution and utility-based models of destination choice. While network-

based characteristics of travel demand present a deeper understanding of interactions

between places in a city, how to fully incorporate them in existing modeling approaches

remains an open question.

These measures provide a basic quantitative picture of the complex network of travel

demand in the selected cities. However, some of the observed differences are mainly due to

the difference in sample size and geographical coverage of the data. To overcome this

issue, we normalize each measure by the mean value of the same measure in each city and

plotting the normalized cumulative distribution functions comparatively. Figure 4 provides

a comparative illustration of the statistical properties of the complex network of trips in

Chicago and Melbourne. Complementary cumulative distribution functions (CDF) of node

degree k, node flux F, and link weight c normalized by the mean in each distribution k0, F0,

and w0 are plotted. Complementary CDF is defined as P(X C x) = 1 - F(x) where F(x) is

the CDF. Figure 4 shows that k, F, and c have, surprisingly, very similar distributions in

Table 3 Summary of the underlying physical meaning of selected network measures in the context of
travel demand

Physical meaning Network measure

Connectivity or interaction between places Node degree hki
Heterogeneity in connectivity between places Coefficient of variation of node degree CV(k)

Interaction strength between places Node flux hFi
Link weight (hwi)
Average shortest path dT
Network diameter u

Heterogeneity in interaction strength between places Coefficient of variation of node flux CV(F)
Coefficient of variation of link weight CV(w)

Local interaction between places Node clustering coefficient c

Global interaction between places Network clustering coefficient C

Fig. 4 Statistical properties of the complex network of trips in Chicago (blue) and Melbourne (green).
Complementary CDF of a node degree k, b node flux F, and c link weight c normalized by the mean in each
distribution k0, F0, and w0. Dashed lines represent power law fits. (Color figure online)
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both networks, suggesting that the underlying dynamics of these networks follow a similar

fundamental process. The node degree distributions shown in Fig. 4a could be interpreted

as a representation of the spatial distribution and accessibility of activities in a city. The

probability of having a node with a larger degree k than the average degree k0 is higher in

Melbourne, since Melbourne’s curve sits above Chicago for k/k0 values larger than one

(100). Also, the variability of k, CV(k), is one and a half times larger in Melbourne than

Chicago. Although this can be partially due to a larger size of the study area in Melbourne,

it also suggests that activities are more homogeneously distributed in Chicago than in

Melbourne. The node flux distribution for both cities is shown in Fig. 4b. Here, we

interpret the node flux distribution as a representation of the level of attractiveness for

different locations. Also, both k and F in both cities exhibit a pronounced kink in the center

of the distribution. Finding an explanation for the observed phenomenon requires further

research. Figure 4c shows the distribution of link weights. In the urban travel demand

context, link weight w is a representation of travel demand between two locations. We

observed that the distribution of link weights are very similar in both cities, despite the

small difference in variability of w, CV(w).

Another commonly used network measure is node and link betweenness centrality. The

betweenness centrality measure b reflects the importance or centrality of a node or a link in

a network. It is computed as the fraction of shortest paths in the entire network that pass

through a particular node or link. b indicates the extent to which a node or link falls on the

path between other nodes or links. The weighted betweenness centrality is computed

Fig. 5 Betweenness centrality in Chicago (blue) and Melbourne (green). Complementary CDF of a link
betweenness centrality b, b link weighted betweenness centrality wb, c node betweenness centrality b, and
d node weighted betweenness centrality wb normalized by the mean in each distribution b0. Dashed lines
represent power laws. (Color figure online)
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similarly. However, the shortest paths are calculated using 1/wij instead of the elements of

the adjacency matrix. Figure 5 shows the distributions of node and link betweenness

centrality P(b) and weighted betweenness centrality P(wb) in Melbourne and Chicago.

Both networks exhibit similar behavior in weighted betweenness distributions, sug-

gesting the existence of a fundamental process in urban travel demand despite the struc-

tural and topographical differences in those cities. The broad betweenness distributions in

Melbourne could be explained by the multi-centric topology of the study region with some

nodes having substantial betweenness and potentially a smaller redundancy of paths. The

analysis of betweenness centrality provides more insight if conducted in the context of

travel supply; rather than travel demand. A more effective way of analyzing betweenness

centrality in the travel demand context is to study network measurements based on indi-

viduals’ activity spaces rather than analyzing the collective characteristics of the entire

network which could be an interesting direction for future research.

Consistent with findings from Woolley-Meza et al. (2011), we also found that simple

power laws do not reasonably fit to these distributions despite their similarity and existence

of a scaling behavior. The tail of the degree distributions exhibits a power law behavior,

however, with a relatively large exponent that does not imply a scale-free network. Table 4

summarizes the power law fitting results based on the method proposed in Clauset et al.

(2009) and Virkar and Clauset (2014) using a series of open source tools developed by the

Santa Fe Institute accessible via http://tuvalu.santafe.edu/*aaronc/powerlaws/.

Table 4 Power-law fitting
results for normalized node
degree k, node flux F, link weight
c, link and node betweenness
centrality b, and link and node
weighted betweenness centrality
wb

a xmin

k/k0

Chicago 4.4964 1.8905

Melbourne 3.9844 4.8426

F/F0

Chicago 3.7962 2.2780

Melbourne 3.4109 3.0942

w/w0

Chicago 3.4073 12.8778

Melbourne 3.3112 14.3072

link b/b0

Chicago 2.3291 0.6495

Melbourne 3.1807 7.1866

link wb/wb0

Chicago 2.5326 3.5712

Melbourne 2.2773 6.1830

node b/b0

Chicago 2.6061 1.2011

Melbourne 2.7091 3.7966

node wb/wb0

Chicago 2.2294 1.4455

Melbourne 2.2016 2.0849
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p xð Þ ¼ x�a for x� xmin ð6Þ

A positive correlation and scaling behavior between node degree and node flux has been

previously observed in other types of networks (Woolley-Meza et al. 2011). We found a

similar correlation in the complex network of urban trips. The observed behavior can be

described as a super-linear scaling relationship F � kb shown by the solid line in Fig. 6

with the scaling exponent of 1.20 and 1.14 for Chicago and Melbourne, respectively.

Furthermore, Fig. 6 shows that as node degree increases, node flux also increases at an

almost equal rate, in both cities. This suggests that highly visited nodes are also well

connected to other nodes.

Spatial analysis of travel demand network properties

Travel demand networks, unlike some biological or technological networks, have a sig-

nificant spatial dimension. Figure 7 illustrates the spatial distribution of node degrees in

Chicago and Melbourne. The spatial distribution follows a heterogeneous pattern in which

a cluster of high degree nodes is located in the central business district (CBD) of both

cities, as expected. An interesting observation is that as the radial distance from Chicago

CBD increases, nodes tend to have lower degrees to an extent where node degrees slightly

increase and remain less variant afterward. We believe this is due to the change in the

density of the nodes in space in the outer suburbs because of the larger size of the census

tracts and lower population density. The observed change suggests that spatial aggregation

of nodes coupled with population density could affect network properties. Further research

is required to better understand the effect of spatial aggregation of nodes on the statistical

properties of urban travel demand networks.

To further explore the influence of spatial form and geographical extent of both cities on

their network characteristics, we define MGDi as the mean geographical distance of node

i to all other nodes connected to node I as represented in the adjacency matrix. Figure 8

illustrates MGD (mean ± SD) as a function of node degree grouped in equal sized bins. As

node degree increases in Chicago, MGD also increases with less variability suggesting that

places with higher connectivity to other places in Chicago also connect to places that are

geographically farther. The trend is, however, different in Melbourne with roughly

Fig. 6 Correlation between node degree and node flux in the complex network of trips in Chicago (a) and
Melbourne (b)
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constant MGD with decreasing variability suggesting that as node connectivity increases in

Melbourne, nodes do not necessarily connect with other nodes located in a farther geo-

graphically distance. This suggests that the travel demand network in Melbourne is more

locally connected compared to Chicago.

Shortest path trees and effective distance

In this section, we explore the structure of the network of travel demand from the per-

spective of a chosen node. Here, we use a different measure of distance, namely effective

distance as previously introduced and used in Thiemann et al. (2010), Woolley-Meza et al.

(2011), and Brockmann and Helbing (2013). We measure effective distance as the

reciprocal of the weight of a link 1/wij. One could also use the normalized weight Pij ¼
wijP
i
wij

and measure effective distance as dij = 1 ? logPij as introduced in Brockmann and

Helbing (2013). Based on this concept, places that are connected by larger traffic wij are

Fig. 7 Spatial distribution of node degrees in a Chicago and b Melbourne following a heterogeneous
pattern

Fig. 8 Mean geographical distance (MGD) ±SD as a function of node degree in a Chicago and
b Melbourne
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effectively closer. Effective distance of a randomly selected node is best illustrated via a

shortest path tree. A shortest path tree approximately visualizes the most probable path

from a random node in a network to the other nodes based on effective distances. Figure 9

presents the shortest path tree plots from the perspective of two different nodes in Chicago

and Melbourne.

The shortest path tree for Melbourne looks more compact than Chicago’s, simply

because of the larger number of nodes in the sample data from Melbourne. The selected

node in Chicago CBD as shown in Fig. 8a is connected to several other well-connected

nodes in a short effective distance, whereas this is not the case in Melbourne. This supports

our previous argument that activities seem to be more homogeneously distributed in

Chicago. The circumference of the circular illustrations in Fig. 8b, d shows that almost all

nodes are located at a roughly same effective distance to the selected nodes. This suggests

that the selected nodes are among low attractive or least visited locations in both cities. To

better understand the qualitative discussion above, next we plot the distribution of the

shortest path distances. The shortest path between two nodes is usually, the geodesic

Fig. 9 Illustration of the shortest path tree structure using the effective distance concept from the
perspective of a a node in the central business district of Chicago, b a node in the western suburbs of
Chicago, c a node in the central business district of Melbourne, and d a node in the northern suburbs of
Melbourne
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distance between them, however, for the purpose of this study, the shortest path distri-

butions are plotted using effective distances.

Figure 10a shows the distribution of mean shortest path (MSP) using the effective

distance concept, for both cities. MSP generally represents the efficiency of information or

mass transport in a network. Chicago is more likely to have a smaller MSP across the

network compared to Melbourne. Since the distributions are plotted using the effective

distance, the observed pattern suggests that on average there are smaller number of trips

between any two locations in Melbourne.

Figures 10b, c show the correlation between MSP and node degree in Chicago and

Melbourne respectively. Despite the difference between the urban structure and topology

of the selected cities, the distributions, however, exhibit very similar characteristics. In

both distributions, there is a larger variability in MSP as node degree or node flux

decreases. The observed MSP and node degree correlation follows a scaling relationship

with negative slope MSP � kb shown by the solid line with scaling exponent of -0.18 and

-0.16 for Chicago and Melbourne, respectively. The MSP and node flux correlation

(Fig. 11) follows a similar relationship with negative slope MSP � Fb shown by the solid

line with scaling exponent of 0.15 both for Chicago and Melbourne. Results suggest that

Fig. 10 a Complementary CDF of the mean shortest path (MSP) length using the effective distance concept
in Chicago (blue) and Melbourne (green); b correlation between MSP and node degree in Chicago; and
c correlation between MSP and node degree in Melbourne. (Color figure online)

Fig. 11 Correlation between MSP and node flux in a Chicago and b Melbourne
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locations with greater connectivity (larger node degree) and greater attractiveness (larger

node flux) also enjoy smaller MSP lengths.

Conclusion

In this study, we applied a complex network-motivated approach to understand and

characterize urban travel demand patterns using origin–destination data. The comparative

analysis of the travel demand in Chicago and Melbourne presented here is a first step

towards a better understanding of the structure, interactions, and evolution of travel

demand networks in cities. Travel demand has been long viewed as a function of socio-

economic and land use characteristics of locations and activities in space. In this paper, we

suggest that the underlying processes in travel demand, viewed as a network, are also

driven by the interaction strength between places (or nodes) consistent with recent argu-

ments by Betty (2013). The new network perspective, as a supplementary approach to

traditional travel demand analysis methods, better captures the influence of urban geog-

raphy on mobility patterns. Network measures provide a clear picture of connectivity or

interaction between places, origins and destinations. Such information can be of great

value when evaluating travel demand model outcomes. Commonly used traditional

methods to evaluate and validate travel demand models include comparison of aggregate

measures of travel such as vehicle miles of travel, vehicle hours of travel, mode share, trip

length distributions, and total trips or trip rates (Pearson et al. 2002; Pendalaya and Bhat

2006; Yagi and Mohammadian 2010). As a supplementary method, one can also perform a

direct comparison of network measures obtained from empirical data and modeled data to

measure the ‘‘goodness of fit’’ of a model from a network perspective. Pendalaya and Bhat

(2006) highlighted the need to further identify behavioral paradigms and concepts to be

incorporated into travel demand and activity models. One of such behavioral concepts is

the spatial (location) interdependencies and interactions as analyzed in this paper. How-

ever, the full potential of application of network science in analyzing social interaction

among people and between people and places in the context of travel demand modeling

still requires further research.

We postulate that travel demand networks of the selected cities exhibit similar statistical

properties despite their differences in topography and urban structure. This could set a new

methodological basis for calibration and validation of travel demand models. Also, some of

the observed network statistical properties of travel demand are interestingly similar to

properties of other types of networks such as social and technological networks reported in

the literature. In summary, results suggest that network of travel demand in Melbourne has

larger heterogeneity in connectivity between nodes with a more heterogeneous distribution

of interaction strengths compared to Chicago. We observed that Melbourne is more locally

connected despite being globally sparser while Chicago enjoys denser connectivity

between nodes representing higher interaction between places. This could generally be

interpreted as a more homogenous distribution of activities in Chicago compared to

Melbourne. We also found that highly visited nodes are also well connected to other nodes

in both cities. Locations with greater connectivity (larger node degree) and greater

attractiveness (larger node flux) also have smaller MSP lengths. A spatial analysis of both

networks showed that the distribution of network properties follows a heterogeneous

pattern in space as expected.
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Although the observations made in this study were based on actual travel data from

household travel surveys, we did not distinguish the trips by mode or purpose. Future

research should focus on the network properties of travel demand by trip mode and

purpose. Also, this study explored the collective structure and properties of combined

individuals’ activity spaces. Network measurements based on individuals’ activity spaces

could further shed light onto the underlying dynamical processes of travel demand as

evolved by the interaction between places in cities.
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